Variable Orifice Double Regulating Valve

Flow Data and Installation Instructions

Technical Data

The Albion ART 250 is a variable orifice double regulating valve used to regulate and measure the flow passing through it.

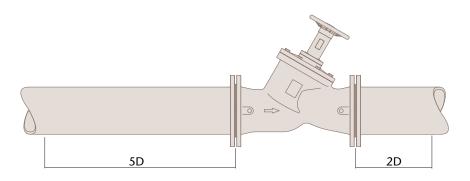
Flow Coefficient

The flow rate can be calculated using the K_V value and a measured signal.

$$K_V = Q*36$$
 $V_V = Q*36$ $V_V = Q*36$ $V_V = V_V = V$

Kvs Values

The K_{VS} values are given on each flow chart at various positions from 25% to fully open.


Pressure Loss and Ky Value

The pressure loss across a variable orifice double regulating valve is the same as the differential pressure (signal) measured across the body seat.

The K_V value is therefore the same as the K_Vs value used to calculate flow rate.

Installation

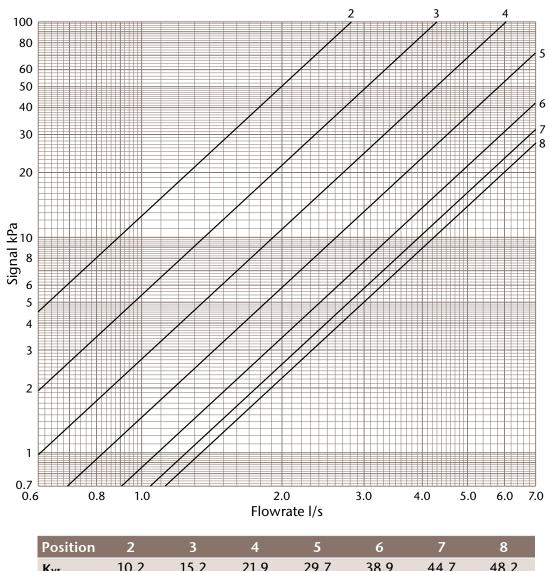
Variable orifice double regulating valves must always be installed with a minimum of 5 pipe diameters of straight pipe, without intrusion, upstream of the valve and a minimum of 2 pipe diameters downstream.

Technical Data

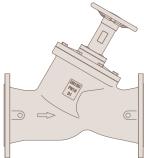
Sizing

Once the required flow rate has been calculated, the size of the variable orifice double regulating valve can be determined based on the following:

With the valve fully open, a minimum signal at the design flow rate of 1 kPa. The maximum signal is normally less than 5 kPa but can be up to 10 kPa.


For sizing the flow velocity should not exceed 3 m/s at the design flow rate.

Pressure Equipment Directive


Under the Pressure Equipment Directive (PED) these variable orifice double regulating valves have been specified for Group 2 Liquids i.e. non-hazardous

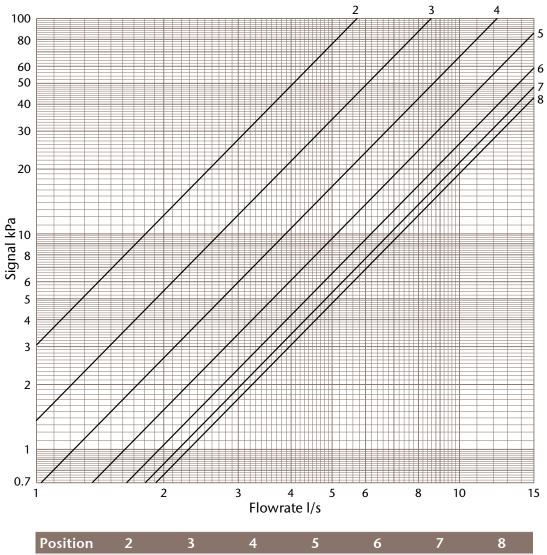
Sizes DN50 to DN80 are classified as SEP (Sound Engineering Practice)

DN50 ART 250 Variable Orifice Double Regulating Valve

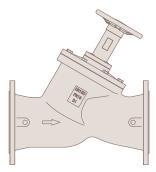
Position	2	3	4	5	6	7	8
Kvs	10.2	15.2	21.9	29.7	38.9	44.7	48.2
					o: 1/5		

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice


$$Q = \frac{Kvs \sqrt{\Delta p}}{36}$$

Where


Q = Flowrate I/s

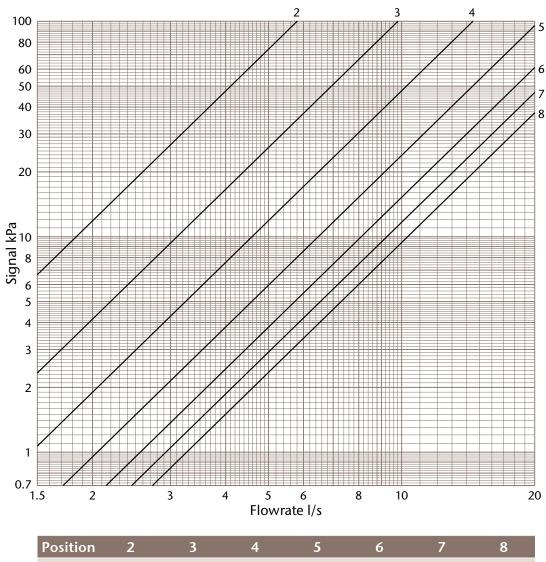
 $\Delta p = Signal$ kPa

DN65 ART 250 Variable Orifice Double Regulating Valve

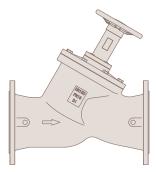
Position	2	3	4	5	6	7	8
Kvs	20.6	30.9	44.0	58.3	70.3	77.8	82.6

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice


$$Q = \frac{Kvs \sqrt{\Delta p}}{36}$$

Where


Q = Flowrate I/s

 $\Delta p = Signal$ kPa

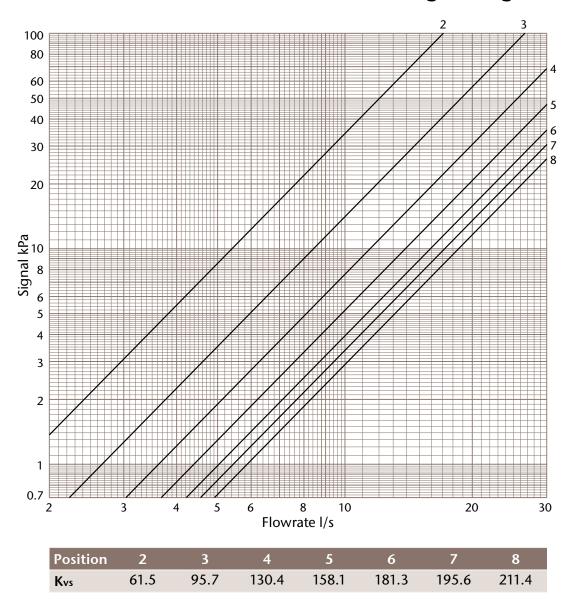
DN80 ART 250 Variable Orifice Double Regulating Valve

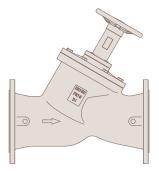
Position	2	3	4	5	6	7	8
Kvs	20.9	35.4	52.1	73.7	92.1	105.6	117.4

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice

$$Q = \frac{Kvs \sqrt{\Delta p}}{36}$$


Where


Q = Flowrate I/s

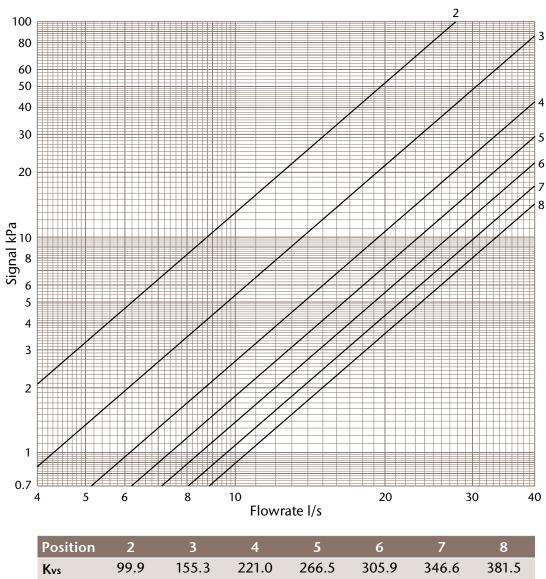
 $\Delta p = Signal$ kPa

Kvs = Signal Co-efficient

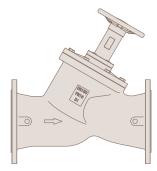
DN100 ART 250 Variable Orifice Double Regulating Valve

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice


$$Q = \frac{K_{VS} \sqrt{\Delta p}}{36}$$

Where


Q = Flowrate I/s

 $\Delta p = Signal$ kPa

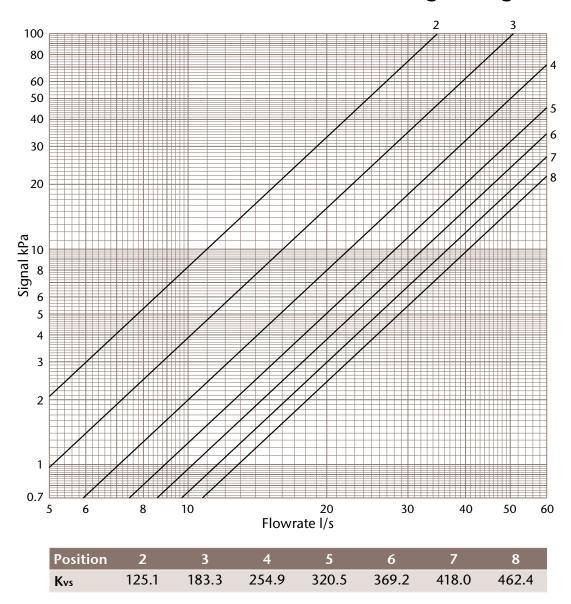
DN125 ART 250 Variable Orifice Double Regulating Valve

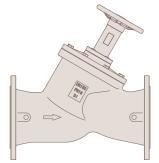
Position	2	3	4	5	6	7	8
Kvs	99.9	155.3	221.0	266.5	305.9	346.6	381.5

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice

$$Q = \frac{K_{VS} \sqrt{\Delta p}}{36}$$


Where


Q = Flowrate I/s

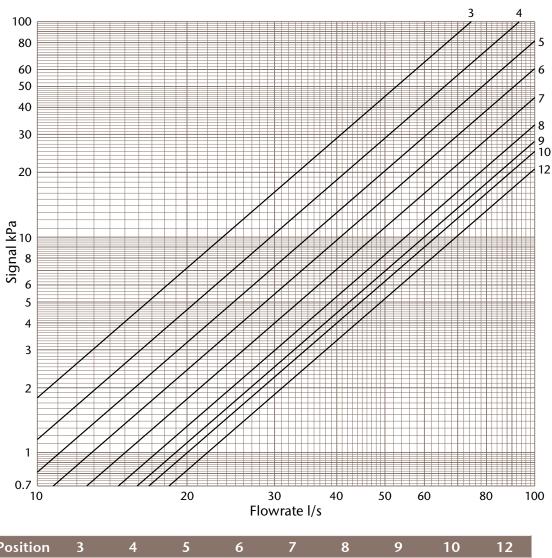
 $\Delta p = Signal$ kPa

Kvs = Signal Co-efficient

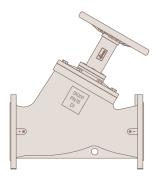
DN150 ART 250 Variable Orifice Double Regulating Valve

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice


$$Q = \frac{K_{VS} \sqrt{\Delta p}}{36}$$

Where


Q = Flowrate I/s

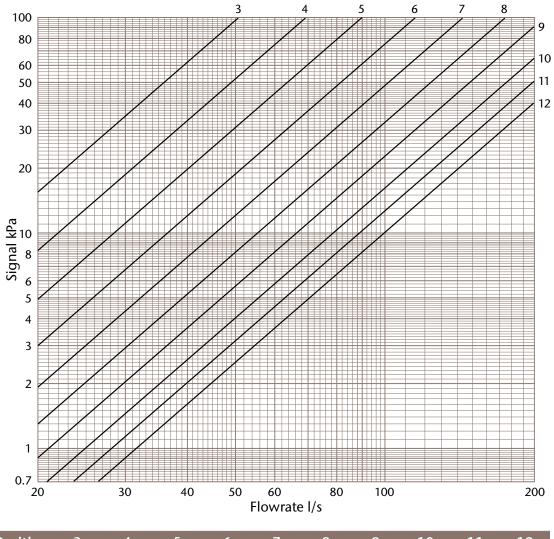
 $\Delta p = Signal$ kPa

DN200 ART 250 Variable Orifice Double Regulating Valve

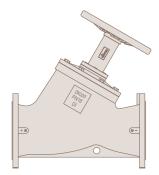
Position	3	4	5	6	7	8	9	10	12
Kvs	268.1	335.3	399.2	463	540	625	683	720	790

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice


$$Q = \frac{Kvs \sqrt{\Delta p}}{36}$$

Where


Q = Flowrate I/s

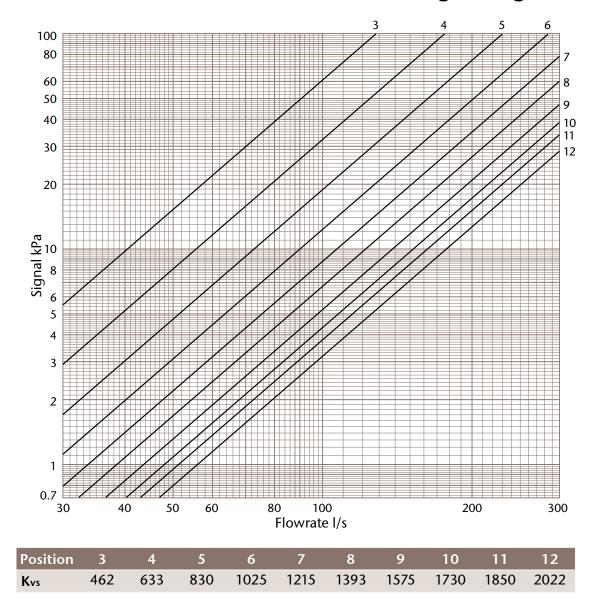
 $\Delta p = Signal$ kPa

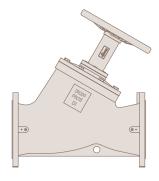
DN250 ART 250 Variable Orifice Double Regulating Valve

Position	3	4	5	6	7	8	9	10	11	12
Kvs	183	250	324	415	518	630	756	894	1013	1135

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice


$$Q = \frac{K_{VS} \sqrt{\Delta p}}{36}$$


Where

Q = Flowrate I/s

 $\Delta p = Signal$ kPa

DN300 ART 250 Variable Orifice Double Regulating Valve

Signal / Flowrate

Chart used to determine flowrate from signal measured across orifice

$$Q = \frac{Kvs \sqrt{\Delta p}}{36}$$

Where

Q = Flowrate I/s

 $\Delta p = Signal$ kPa