

518 Flexible Fast Cure

Product Description

LOCTITE® 518™ provides the following product characteristics:

Technology	Acrylic		
Chemical type	Dimethacrylate ester		
Appearance (uncured)	Red gel-like material ^{LMS}		
Fluorescence	Positive under UV light ^{LMS}		
Components	One component, requires no mixing		
Viscosity	Thixotropic		
Cure	Anaerobic		
Cure benefit	Room temperature cure		
Application	Sealing		

LOCTITE® 518™ is a single component, medium strength, anaerobic sealant which cures when confined in the absence of air between close fitting metal surfaces. Typical applications include sealing close fitting joints between rigid metal faces and flanges. Provides resistance to low pressures immediately after assembly of flanges. Typically used as a form-in-place gasket on rigid flanged connections, e.g. gearbox and engine casings, etc. The thixotropic nature of LOCTITE® 518™ reduces the migration of liquid product after application to the substrate.

NSF International

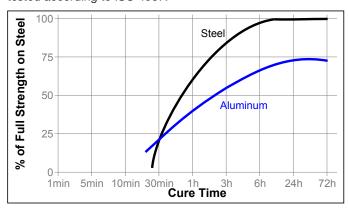
Registered to NSF Category P1 for use as a sealant where there is no possibility of food contact in and around food processing areas. Note: this is a regional approval. Please contact your local Technical Service Centre for more information and clarification.

Certified to ANSI/NSF Standard 61 for use in commercial and residential potable water systems not exceeding 82°C. **Note:** this is a regional approval. Please contact your local Technical Service Centre for more information and clarification.

Typical Properties of Uncured Material

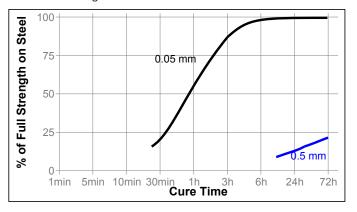
Specific Gravity @ 25°C	1.13	
Flash point - see SDS		
Viscosity, Brookfield - HBT, 25 °C, mPa⋅s (cP):		
Spindle TC, speed 0.5 rpm, helipath	3,000,000 to 4,500,000 ^{LMS}	
Spindle TC, speed 5.0 rpm, helipath	500,000 to 1,000,000 ^{LMS}	

Instant Sealing Capability

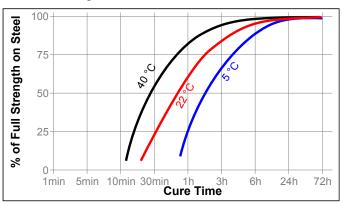

Anaerobic sealants have the ability to resist low on-line test pressures while uncured. This test was performed with uncured product immediately after assembly of an annular polycarbonate sealing surface with an internal diameter of 50mm and an external diameter of 70mm.

Pressure Resistance, MPa:			
Induced Gap 0.05 mm	0.3		
Induced Gap 0.125 mm	0.15		
Induced Gap 0.25 mm	0.05		

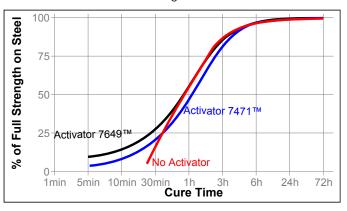
Typical Curing Performance


Cure Speed vs. Substrate

The rate of cure will depend on the substrate used. The graph below shows the shear strength developed with time on grit blasted steel lap shears compared to different materials and tested according to ISO 4587.


Cure Speed vs. Bond Gap

The rate of cure will depend on the bond line gap. The following graph shows shear strength developed with time on grit blasted steel lap shears at different controlled gaps and tested according to ISO 4587.


Cure Speed vs. Temperature

The rate of cure will depend on the ambient temperature. The graph below shows the shear strength developed with time on grit blasted steel lap shears at different temperatures and tested according to ISO 4587.

Cure Speed vs. Activator

Where cure speed is unacceptably long, or large gaps are present, applying activator to the surface will improve cure speed. The graph below shows the shear strength developed with time on grit blasted steel lap shears using Activator 7471™ and 7649™ and tested according to ISO 4587.

Typical Properties Of Cured Material

Physical Properties

Specific Heat, kJ/(kg·K)	0.3
Coefficient of Thermal Expansion, ISO 11359-2, K-1	80×10 ⁻⁶
Coefficient of Thermal Conductivity, ISO 8302, W/(m·K)	0.1

Typical Performance of Cured Material

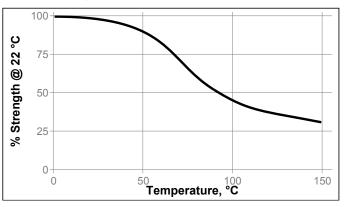
Adhesive Properties

Cured for 1 hour @ 22°C			
Compressive Shear Strength, ISO 10123:	N/mm²	psi	
Steel pins and collars	≥5.0 ^{LMS}	≥725	
Cured for 24 hours @ 22°C			
Compressive Shear Strength, ISO 10123:	N/mm²	psi	
Steel pins and collars	≥5.0 ^{LMS}	≥725	
Lap Shear Strength, ISO 4587:	N/mm²	psi	
Steel (grit blasted)	7.5	1,100	
Tensile Strength, ISO 6922:	N/mm²	psi	
Steel pin (grit blasted)	8.5	1,200	

Sealing Capability

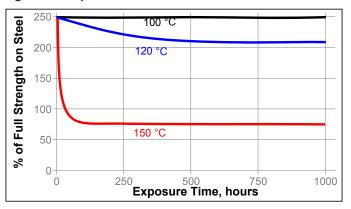
An annular shaped gasket with an inner diameter of 50mm and an external diameter of 70mm was tested up to 1.3 MPa for leakage (immersion in water for one minute).

Sealed to Maximum Induced Gap, mm:		
Mild steel	0.25	
Aluminium	0.25	


Typical Environmental Resistance

The following tests refer to the effect of environment on strength. This is not a measure of sealing performance.

Cured for 1 week @ 22°C	
Lap Shear Strength, ISO 4587:	
Steel (grit blasted)	


Hot Strength

Tested at temperature

Heat Aging

Aged at temperature indicated and tested @ 22°C

Chemical/Solvent Resistance

Aged under conditions indicated and tested @ 22°C

		% of initial strength		
Environment	°C	100 h	500 h	1000 h
Motor oil	125	100	100	140
Gasoline	22	60	60	55
Water/glycol 50/50	87	100	100	90
DEF (AdBlue®)	22	_	65	65

General Information

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Safety Data Sheet (SDS).

Where aqueous washing systems are used to clean the surfaces before bonding, it is important to check for compatibility of the washing solution with the adhesive. In some cases these aqueous washes can affect the cure and performance of the adhesive.

This product is not normally recommended for use on plastics (particularly thermoplastic materials where stress cracking of the plastic could result). Users are recommended to confirm compatibility of the product with such substrates.

Directions for Use:

- 1 For best performance bond surfaces should be clean and free from grease.
- 2 The product is designed for close fitting flanged parts with gaps up to 0.25mm.
- 3 Apply manually as a continuous bead or by screen printing to one surface of the flanges.
- 4 Low pressures (<0.05 MPa) may be used when testing to confirm a complete seal immediately after assembly and before curing.
- 5 Flanges should be tightened as soon as possible after assembly to avoid shimming.

Loctite Material Specification^{LMS}

LMS dated February 13, 2002. Test reports for each batch are available for the indicated properties. LMS test reports include selected QC test parameters considered appropriate to specifications for customer use. Additionally, comprehensive controls are in place to assure product quality and consistency. Special customer specification requirements may be coordinated through Henkel Quality.

Storage

Store product in the unopened container in a dry location. Storage information may be indicated on the product container labelling.

Optimal Storage: 8°C to 21°C. Storage below 8°C or greater than 28°C can adversely affect product properties.

Material removed from containers may be contaminated during use. Do not return product to the original container. Henkel Corporation cannot assume responsibility for product which has been contaminated or stored under conditions other than those previously indicated. If additional information is required, please contact your local Technical Service Centre or Customer Service Representative.

Conversions

 $(^{\circ}C \times 1.8) + 32 = ^{\circ}F$

 $kV/mm \times 25.4 = V/mil$

mm / 25.4 = inches

 μ m / 25.4 = mil

 $N \times 0.225 = lb$

 $N/mm \times 5.71 = Ib/in$

 $N/mm^2 \times 145 = psi$

MPa x 145 = psi

 $N \cdot m \times 8.851 = Ib \cdot in$

 $N \cdot m \times 0.738 = Ib \cdot ft$

 $N \cdot mm \times 0.142 = oz \cdot in$

mPa·s = cP